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ABSTRACT

The Gent-McWilliams (GM) parameterization is extended to include a direct influence

in the momentum equation. The extension is carried out in two stages; an analysis of the

inviscid system is followed by an analysis of the viscous system. In the inviscid analysis

the momentum equation is modified such that potential vorticity is conserved along parti-

cle trajectories following a transport velocity that includes the Bolus velocity in a manner

exactly analogous to the continuity and tracer equations. In addition (and in contrast to

traditional GM closures), the new formulation of the inviscid momentum equation results in

a conservative exchange between potential and kinetic energy. The inviscid form of the eddy

closure does not conserve total energy; there is a non-conservation proportional to the time

derivative of the Bolus velocity. The hypothesis that the viscous term in the momentum

equation should give rise to potential vorticity being diffused along isopycnals in a manner

analogous to other tracers is examined in detail. While the form of the momentum closure

that follows from a strict adherence to this hypothesis is not immediately interpretable within

the constructs of traditional momentum closures, three approximations to this hypothesis

results in a form of dissipation that is consistent with traditional Laplacian diffusion. The

most important conclusion from this hypothesis is that the horizontal viscosity parameter in

the momentum equation should be identical to the traditional GM closure parameter. We

propose the viscous form of the eddy closure for potential vorticity as a possible closure for

use in ocean circulation models.
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1. Introduction

The standard implementation of the Gent and McWilliams (1990) closure for the effects of

mesoscale eddies on the mean flow is in the equations for potential temperature and salinity

in z-coordinates, or in the layer thickness and tracer equations in isopycnal coordinates. In

virtually all ocean models and ocean components of climate models, the momentum equation

used is the primitive equation form for the mean velocity.

For a constant coefficient, the Gent and McWilliams (1990) closure assumes a down-

gradient assumption for layer thickness variations in isopycnal coordinates to represent the

additional Bolus velocity acting on tracers. There have been many suggestions, both from

theoretical ideas and analyses of numerical model results, that the Bolus velocity should

be based on a down-gradient assumption for potential vorticity (PV). However, the model

analyses always use the approximate planetary potential vorticity, the Coriolis parameter

divided by the layer thickness, which only differs from the GM form by the Coriolis param-

eter. This is not the true PV of the primitive equations, which is expressed as the absolute

vorticity divided by the isopycnal layer thickness. In this paper, the consequences of an

eddy parameterization for the full Ertel PV, based on the absolute vorticity, is explored in

detail. A consequence is that the eddy parameterization also affects the vorticity equation,

and hence the momentum equation of the model.

There have been several previous proposals to use different momentum equations in non-

eddy-resolving models, although none have been implemented in standard, global ocean

models. Gent and McWilliams (1996) suggest that momentum advection should be by

the transport velocity, not the mean velocity, to be consistent with the tracer advection.
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Greatbatch (1998) and McDougall and McIntosh (1996) both propose a more radical change;

namely that the momentum equation should be written entirely in terms of the transport

velocity. One reason is that the entire model then has only a single velocity variable. A

numerical model using a momentum equation of this form has been implemented, and used to

obtain global solutions, by Ferreira and Marshall (2006). However, these solutions differ near

the equator from those using the standard GM form, because the geostrophic approximation

is used to transform GM into a vertical viscosity term, see Greatbatch (1998) and Gent

et al. (1995). With this form of the momentum equation, a mean PV is conserved, but it is

a function of the transport velocity, which is difficult to justify for the following reason.

Ertel PV is often assumed to be the most fundamental dynamical variable because it

obeys a conservation equation, and all the other variables can be determined if the PV

distribution is known. PV satisfies the same inviscid, adiabatic equation as a passive tracer;

so it is often assumed that it should be treated exactly like a passive tracer. In isopycnal

coordinates, this means that the averaging should be done on the equation for the thickness

times the PV, which is just the absolute vorticity. This is a linear function of velocity, so that

averaging results in the mean PV being a function of the mean velocity, not the transport

velocity. In this paper, we assume the hypothesis that mean Ertel PV should obey the

same conservation equation as a passive tracer, and is a function of the mean velocity. This

requires that the momentum equation solves for the mean velocity, not the transport velocity.

We propose a different momentum equation that results in Ertel PV being conserved along

particle trajectories defined by the transport velocity, just like a passive tracer. An adiabatic

analysis of the PV and energy equations is given in Sections 2 and 3, and Section 4 explores

the consequences of assuming that PV is also diffused along isopycnal surfaces.
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2. Analysis of potential vorticity

a. The unmodified continuous system

The analysis is based on incompressible, Bousinesq and adiabatic flow in isopycnal coor-

dinates. The isopycnal layer thickness equation can be expressed as

∂µ

∂t
+∇ρ · (µu) = 0, (1)

where the isopycnal layer thickness, µ, is defined as µ = ∂h/∂ρ and h is the height of

constant density surfaces. The layer thickness is transported by the horizontal velocity

u. The entire analysis is conducted in an isopycnal coordinate system where the ∇, ∇· and

k·∇× operators are always evaluated along isopycnal surfaces, hence we omit the ρ subscript

on these operators below. The inviscid momentum equation can be expressed as

∂u

∂t
+ (ζ + f) k× u = −∇φ−∇K, (2)

where ζ is the relative vorticity defined as ζ = k · ∇ × u, k is the unit vector defining the

local vertical direction, f is the planetary vorticity projected in the direction of the local

vertical, φ is the Montgomery potential and K is the kinetic energy defined as 1
2
|u · u|. The

absolute vorticity equation is obtained by applying the k · ∇× operator to (2) to obtain

∂η

∂t
+∇ · (ηu) = 0, (3)

where the absolute vorticity is defined as η = k · ∇×u + f . In the isopyncal system, Ertel’s

potential vorticity is defined as q = η/µ and can be used to rewrite (3) as a potential vorticity
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equation of the form

∂

∂t
(µ q) +∇ · (µ q u) = 0. (4)

When (4) and (1) are combined, the PV equation can be expressed as

Dq

Dt
=
∂q

∂t
+ u · ∇q = 0, (5)

which states that in the inviscid system PV is a conserved along particle trajectories following

the u velocity. Equation (4) indicates that the time-rate-of-change of density-weighted PV

at a fixed position is due entirely to the divergence of the density-weighted PV flux. If we

track the ∇ · (µ qu) term in (4) backwards in the derivation to its root, we find it arises

entirely from the second term in the momentum equation (2). We refer to the (ζ + f) k× u

in (2) as the nonlinear Coriolis force since it includes the quasi-linear Coriolis force due to

planetary vorticity and a portion of the nonlinear velocity transport term. It is critically

important to recognize that

k · ∇ × [(µ q) k× u] = ∇ · (µ qu) . (6)

The divergence of PV flux shown in (4) is exactly equal to the curl of the nonlinear Coriolis

force shown in (2). Furthermore, PV is transported by the velocity that appears in the

nonlinear Coriolis force.
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b. Defining an inviscid eddy closure on PV

The underlying premise of the GM closure is that when certain processes are missing

in a simulation, such as meso-scale eddies in coarse-resolution ocean simulations, then the

velocity used to transport layer thickness and tracer constituents differs from the predicted,

mean velocity if it is to include the effect of these unresolved processes (Gent and McWilliams

1990). Formally, we express the differences between these two types of velocity as

U = u + u∗, (7)

where the mean velocity u is predicted from the momentum equation, U is the velocity

used to transport layer thickness and tracer constituents and u∗ is the difference between

these two velocities. In the context of the GM closure, u∗ is commonly referred to as the

Bolus velocity (Gent et al. 1995). The Bolus velocity is computed based on state variables

and accounts for, at least partially, the influence of unresolved phenomena. The precise

form of the closure is not required for the analysis below, i.e. the analysis holds for any

type of closure that results in the transport velocity differing from the mean velocity. In

typical implementations of the GM closure, the isopycnal layer thickness equation is altered

to become

∂µ

∂t
+∇ · (µU) = 0, (8)

and all tracer constituent equations are similarly changed to

∂

∂t
(µ τ) +∇ · (µ τ U) = 0. (9)
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In effect, the material derivative is altered to become

D∗

Dt
=

∂

∂t
+ U · ∇, (10)

which states that Lagrangian conserved quantities are transported by the U velocity.

While the GM closure impacts the evolution of isopycnal layer thickness and tracer

constituents, in general the momentum equation is unaltered, i.e. the GM closure does not

directly modify the mean velocity field u and (2) is used unchanged even when the GM closure

is incorporated into the simulation. As discussed in the Introduction, our hypothesis is that

the eddy closure gives a mean PV that obeys a conservation equation like (5). However, if

we try to repeat the derivation of the PV equation shown in Section 2.a based on (8) and

(2), we find that we can not obtain a PV equation of the form shown in (5). The root cause

for this difficulty is that the former equation is based on the material derivative shown in

(10) while the latter is based on a material derivative shown in (5). A PV relation analogous

to (5) requires that these material derivatives be the same.

When the momentum equation is expressed in vector-invariant form, as shown in (2),

and the relationship between the nonlinear Coriolis force and the PV flux is recognized,

as shown in (6), then understanding how to modify the momentum equation to obtain the

assumed PV dynamics is straightforward. The PV flux in (4) is based on the u velocity that

is identical to, and arises completely from, the u velocity in the nonlinear Coriolis force.

Thus, the appropriate modification of (2) is simply

∂u

∂t
+ (ζ + f) k×U = −∇φ−∇K. (11)
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Equation (11) states that the inviscid part of the GM closure on momentum can be captured

by computing the nonlinear Coriolis force based on the transport velocity instead of the

predicted, mean velocity. If we repeat the derivation of PV in Section 2.a based on (11), we

obtain

∂

∂t
(µ q) +∇ · (µ qU) = 0, (12)

that when combined with (8) leads to

D∗q

Dt
=
∂q

∂t
+ U · ∇q = 0. (13)

Computing the nonlinear Coriolis force based on U instead of u leads to a system where

layer thickness, tracer constituents and PV are all transported by the same modified material

derivative shown in (10). We refer to (8), (9), and (11) as the inviscid form of our eddy closure

on potential vorticity. The extension of this closure to include diffusion along isopycnals is

discussed after an analysis of the energetics of the inviscid, adiabatic system.

3. Analysis of energetics

While the above analysis indicates how to modify the momentum equation in order to

transport PV with the same material derivative as the scalar fields, no mention is made of

the energetics of the eddy closure.
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a. The unmodified system

The isopycnal system analyzed in Section 2.a does conserve total energy. The kinetic

energy equation is produced by adding K∗(1) and µu·(2) to obtain

K
∂µ

∂t
+
µ

2

∂ |u|2

∂t
+∇ · (µuK) = −µu · ∇φ. (14)

In order to keep the nonlinear Coriolis force from generating spurious sources of kinetic

energy, the kinetic energy must be obtained by taking the inner product of (2) with whatever

velocity is used in the nonlinear Coriolis force. With K = 1
2
|u|2, equation (14) reduces to

∂

∂t
(µK) +∇ · (µKu) = −µu · ∇φ. (15)

The potential energy equation is obtained by taking φ∗(1) to yield

φ
∂µ

∂t
= −φ∇ · (µu) . (16)

By adding (15) and (16), we obtain the total energy equation as

∂

∂t
(µK) + φ

∂µ

∂t
+∇ · (µKu) +∇ · (µφu) = 0. (17)

It is important to note that the right-hand side (RHS) of (15) and (16) represent the conser-

vative exchange of kinetic and potential energy due to the interaction between the pressure

gradient force and the velocity field. This exchange is conservative only when the velocity

used to transport layer thickness is the same velocity that is used to produce the kinetic

energy equation.
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If we integrate over the entire (x, y, ρ) domain with suitable boundary conditions on u

and assume hydrostatic balance, then the total energy equation (17) becomes

∂

∂t

∫
V

[
µK +

gh2

2ρ0

]
dx dy dρ = 0, (18)

where g is gravity and ρ0 is a reference density. (18) shows that µK + gh2/2ρ0 is a global

invariant of the incompressible, Boussinesq and adiabatic system.

b. Energetics of the eddy closure for potential vorticity

We want the energy relations of the eddy closure to be well behaved, and mimic those

of the unmodified system. In particular, we wish to keep the important physical property

that the nonlinear Coriolis force does not contribute to the KE, which requires that the dot

product of the momentum equation (11) is by the total velocity U. Thus, the kinetic energy

equation is formed by adding K∗(8) and µU·(11) to obtain

K
∂µ

∂t
+ µU · ∂u

∂t
+∇ · (µUK) = −µU · ∇φ. (19)

While the kinetic energy has not yet been defined in the eddy closure, we note that, given

suitable boundary conditions on U, the term ∇ · (µUK) vanishes when integrated over the

entire domain; this result holds for any definition of K.

The potential energy equation is obtained by taking φ∗(8) to produce

φ
∂µ

∂t
= −φ∇ · (µU) . (20)

The total energy equation is constructed by adding (19) and (20) to yield
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K
∂µ

∂t
+ µU · ∂u

∂t
+ φ

∂µ

∂t
+∇ · (µUK) +∇ · (µUφ) = 0. (21)

Note that, as in the unmodified system, the terms on the RHS of (19) and (20) combine to

produce a single term that vanishes when integrated over the entire domain.

The primary complication in deriving the energy relation for the eddy closure arises

during the consideration of the definition of K. In the unmodified system, the first two

terms in (14) combine when the obvious choice for K is made. In the eddy closure, the

analogous terms do not combine because the transport velocity U differs, in general, from

the mean velocity u. If we focus on the first two terms in (21), we find that there is no

definition of kinetic energy that makes these terms combine. However, if we choose

K =
1

2
(u · u) + (u · u∗) =

1

2
(u ·U) +

1

2
(u · u∗) , (22)

this results in a total energy equation in the form

∂

∂t
(µK) + φ

∂µ

∂t
+∇ · (µUK) +∇ · (µφU) = µu · ∂u∗

∂t
. (23)

Thus, the eddy closure has an energy relation analogous to the unmodified system that is

not conservative to within the term shown on the RHS of (23). We made this choice for K

because it has the usual first term from the mean velocity, and results in only a single RHS

term in (23) that is small because it is proportional to ∂u∗/∂t.
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4. Diffusion of PV along isopycnals

To this point we have restricted the analysis to inviscid dynamics. In addition to a

Bolus transport velocity, the sub-grid effects on tracer mixing are also parameterized as a

diffusion along isopyncals, as shown in Redi (1982). With an understanding of how to alter

the momentum equation such that PV is transported by the total velocity, we analyze the

impact on the momentum equation of assuming that PV is also diffused along isopyncals.

The hypothesis that PV is diffused along isopycnals leads to a PV equation of the form

D∗q

Dt
=
∇ · [κµ∇q]

µ
, (24)

where we have used the small-slope approximation from Eq. 2 of Gent and McWilliams

(1990). The premise of (24) is that PV is diffused along isopyncals in a manner exactly

analogous to other tracers (Smith 1999).

Working backwards to determine the form of the momentum equation leading to (24) we

obtain (11) with the additional term on the RHS of

∂u

∂t
+ (ζ + f) k×U +∇φ+∇K = k× [κµ∇q] . (25)

If we repeat the PV derivation shown in Section 2.b based on (25), we obtain (24).

While the RHS of (25) results in PV being diffused along isopycnals in a manner exactly

analogous to tracer diffusion, it is not obvious that the RHS of (25) satisfies other equally or

more important constraints required of a diffusion-based closure modifying the momentum

equation. In particular, momentum closures of this type should not damp velocity fields

associated with solid body rotation (referred to as Condition I hereafter). In addition,
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momentum closures should result in a local, positive definite sink of kinetic energy (referred

to as Condition II hereafter).

From a pragmatic perspective, we judge Conditions I and II as more essential properties

of a momentum closure than ensuring that PV diffuses along isopyncals. While Conditions

I and II might eclipse those related to PV dynamics, we would like to determine the extent

to which all of these constraints can be satisfied.

The works of Wajsowicz (1993), Smith and McWilliams (2003), and Griffies (2004) derive

a general form of diffusion-based momentum closures such that Condition I and II are satis-

fied. We find that the hypothesis that PV is diffused along isopycnals in a manner analogous

to tracers, as stated in (25), is not entirely consistent with Conditions I and II.

The first problem with (25) is that the RHS can not be expressed as the divergence of a

tensor. This deficiency is easily remedied by moving κ and µ inside the ∇ operator to obtain

∂u

∂t
+ (ζ + f) k×U +∇φ+∇K = k× [∇κη] . (26)

Moving µ inside the gradient implies that diffusion acts on absolute vorticity instead of

potential vorticity. This idea is consistent with the finding from Haynes and McIntyre (1987)

that diabatic processes can not alter the thickness-weighted PV and, as a result, absolute

vorticity is conserved even under the diabatic rearrangement of isopycnal layers. While the

RHS of (26) is the divergence of a stress tensor, the tensor is not skew-symmetric and, as a

result, the stresses resulting from (26) damp solid body rotation.

In order to transform (26) such that Conditions I and II are satisfied, three modifications

are required. First we assume that relative vorticity is diffused along isopycnals as opposed
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to the absolute vorticity, thereby altering the stress tensor to

σ =

 0 +κ ζ

−κ ζ 0

 =

 0 κ (vx − uy)

κ (uy − vx) 0

 (27)

The stress tensor (27) is antisymmetric, which means it cannot satisfy Condition I. The

simplest way to overcome this is to assume that the flow is in geostrophic balance and non-

divergent so that ux + vy = 0. These two approximations, along with the choice of κ being

a constant, lead to traditional Laplacian diffusion of the form

∂u

∂t
+ (ζ + f) k×U +∇φ+∇K = κ∇2u. (28)

When κ varies in space, the appropriate form for the RHS of (28) that does not damp solid

body rotation is

∂u

∂t
+ (ζ + f) k×U +∇φ+∇K = ∇ · (κ∇u) + Jxy (κ,k× u) , (29)

see Wajsowicz (1993). Note that this requires a third approximation from (27) because,

when κ varies, it leads to a Jacobian term with the opposite sign. We refer to (29) as the

viscous form of our eddy closure for potential vorticity.

5. Discussion

We have postulated an eddy closure for potential vorticity that directly influences the

evolution of momentum. We decompose the eddy closure into two parts, an inviscid modifi-

cation of the momentum equation (11) followed by a viscous modification of the momentum
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equation (29). We believe that the viscous form of the eddy closure should be explored as a

possible closure for use in ocean circulation models.

The inviscid form of the eddy closure is obtained by altering the manner in which the

nonlinear Coriolis force in the momentum equation is computed (see (11)). This seemingly

minor alteration allows us to derive an exact conservation relation for Ertel’s potential vor-

ticity within the framework of a Gent-McWilliams closure. The modification is to use the

transport velocity instead of the predicted velocity in the computation of the nonlinear Cori-

olis force. This alteration leads to PV being conserved along particle trajectories defined by

the transport velocity U that includes the influence of the Bolus velocity u∗.

The inviscid form of the eddy closure significantly alters the energetics of the system

relative to traditional GM closures. In traditional GM closures where layer thickness is

transported by U and velocity is transported by u, the conversion between resolved potential

energy and resolved kinetic energy is not conservative. When the choice for the Bolus velocity

is made following Gent and McWilliams (1990), the GM closure leads to a systematic global

sink from resolved potential energy to unresolved scales. The intent of this global sink

is to mimic the transfer of potential energy to unresolved, mesoscale kinetic energy. The

energetics of the eddy closure developed above are significantly different. In this case the

conversion between the resolved potential energy and resolved kinetic energy is conservative.

While the end result of removing potential energy from the system might still be attainable

through the dissipation of resolved kinetic energy, the energy pathway when using this eddy

closure will be substantially altered relative to standard implementations of the GM closure.

Understanding how this altered energy pathway impacts the global ocean circulation will be

a critical aspect of the evaluation of this eddy closure.

15



While the inviscid form of the eddy closure produces an exactly conservative exchange

of energy between the kinetic and potential energy reservoirs (see (21)), the closure does

not lead to exact conservation of total energy. The reason for this discrepancy can be found

in the kinetic energy equation of the eddy closure (19). The advective part of the material

derivative is well-posed and the advecting velocity is the transport velocity U. Yet we are

unable to choose a kinetic energy to combine the time derivative terms due to the mixing of

the predicted and transport velocities. As a result, the inviscid form of the eddy closure has

a non-conservation in total energy that is proportional to the time derivative of the Bolus

velocity (see RHS of (23)).

Previous studies that have explored the relationship between the GM closure and PV

dynamics generally result in the addition of an undetermined gauge function appearing in the

momentum equation (see, for example, Eq. 75 of Smith (1999)). The gauge function arises

because, while an analysis of the PV dynamics can tightly constrain the rotational part of the

velocity field, it offers no constraint on the divergent part of the velocity field. As a result,

any purely divergent forcing can be added to the momentum equation and still obtain the

same PV equation. In addition to being wholly unsatisfying, the unknown structure of the

gauge function precludes the implementation of these closures in ocean circulation models.

In contrast to previous studies, we have used the constraint of total energy conservation to

remove the vagueness that accompanies the gauge function. If we add any non-zero gauge

function to either the inviscid or viscous form of the eddy closure (shown in (11) and (29),

respectively) then we “break” some of the key aspects of the energy analysis. As presented,

both forms of the eddy closure result in the exact exchange of energy between its kinetic and

potential forms. Adding any nonzero gauge function into the momentum equation would
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result in an inexact exchange of these forms of energy.

The inviscid form of the eddy closure on potential vorticity is surprisingly similar to the

Lagrangian-Averaged Navier Stokes (LANS) closure, see (Holm 1999). In fact, our (11) has

essentially the same functional form as the LANS closure when expressed in vector-invariant

form (e.g. see Eq 1.4 in Gibbon and Holm (2006)). In the LANS closure, two velocities also

exist; there is a transport velocity, termed the “smooth velocity” in the nomenclature of the

LANS closure, and a predicted, mean velocity, termed the “rough velocity.” In fact, the only

differences between this eddy closure and the LANS closure is the definition of the potential

on the RHS of the momentum equation (11), and the specification of the relationship between

the transport velocity U and the mean velocity u, i.e. the specification of u∗. In GM-like

closures, the u∗ velocity is generally specified so as to produce a systematic flow of available

mean potential energy into eddy kinetic energy. In the LANS closure, the specification of u∗

is purely kinematic in nature being only a function of the mean velocity and a single specified

parameter called α. Both closures lead to exact conservation of PV along trajectories defined

by the transport velocity U. The closures differ in terms of energetics; the LANS closure

leads to exact conservation of total energy while our eddy closure for potential vorticity leads

to non-conservation of total energy proportional to the time derivative of u∗, as discussed

immediately above. It would be informative to explore the implications of this striking

resemblance between these two closures.

Following the analysis of PV dynamics in the inviscid system, we turn to the hypothesis

that PV is diffused along isopycnals in a manner exactly analgous to other tracers. While one

can readily find the form of dissipation on the RHS of the momentum equation that leads to

PV being diffused along isopycnals, it has severe drawbacks compared to the standard form
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for horizontal viscosity used in ocean models in that it damps velocity fields associated with

solid-body rotation and does not result in a local, positive-definite sink of kinetic energy.

On the other hand, with three tenable assumptions, the closure form consistent with PV

diffusion along isopyncals can be converted into a form that is significantly more comfortable.

The assumptions required to transform the PV diffusion term into an acceptable form are

that relative vorticity, not PV, is diffused along isopyncals and that to leading order the

flow is in geostrophic balance. Furthermore, when the coefficient is variable in space then an

additional approximation involving the reversal of the sign of the Jacobian term is required.

With these assumptions, we are able to obtain a form of dissipation that is consistent with

traditional Laplacian diffusion, that does not damp solid-body rotation and that locally

dissipates kinetic energy. The result of this analysis is the viscous form of the eddy closure

for potential vorticity shown in (29).

In our view, the most important result of the analysis of the viscous system is not related

to the approximations required in the kinematic field in order to obtain a proper form of

dissipation, but rather in the structure of the closure parameter. Our analysis clearly implies

that the “horizontal viscosity coefficient” used in the momentum equation should be set equal

to κ, which is the GM closure parameter. This had been hinted at in Gent and McWilliams

(1996) in the quasigeostrophic limit. However, in all implementations of the GM scheme

that we are aware of, the viscosity coefficient has always been chosen with different criteria

and numerical values than the GM coefficient.

Any value that might be contained in the method proposed above can only be realized

through the implementation of the closure in ocean circulation models. A recently developed

numerical scheme has demonstrated the ability to mimic the important aspects of this eddy
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closure analysis within a discrete system (see Thuburn et al. (2009) and Ringler et al. (2009)).

Specifically, the discretization of (11) leads to PV conserved along U trajectories and, along

with the discretization of (8), leads to a conservative exchange between potential and kinetic

energy, as shown in (23). The numerical method is applicable to virtually all types of meshes

used in ocean climate models.

With the analytical analysis conducted above and a numerical scheme able to represent

the relevant aspects this analysis, future work will concentrate on the implementation and

evaluation of the eddy closure in ocean circulation models.
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